# Using the wvfPlot function

The wavefront toolbox uses Zernike polynomials to manage the optics. This script illustrates ways to create plots of the wvf data using the wvfPlot function.

Copyright Wavefront Toolbox Team, 2014-15

## Initialize

```ieInit;
```

## Set up wfv object

```wvf = wvfCreate;
wave = 550; wvf = wvfSet(wvf,'wave',wave);

% There is a bit of an art to setting the number of samples,
% because of reciprocal relation between sampling in pupil and
% retinal domains.  This choice is an OK compromise, but you can
% get finer results with additional fussing
wvf = wvfSet(wvf,'spatial samples',401);

% Compute the PSF
wvf = wvfComputePSF(wvf);
```

## Make the plot in microns

```unit = 'um';
[u,p]= wvfPlot(wvf,'1d psf space',unit,wave);
set(p,'color','k','linewidth',2)
title([num2str(wave) ' nm']);

% Normalize the plot
unit = 'um';
[u,p]= wvfPlot(wvf,'1d psf space normalized',unit,wave);
set(p,'color','b','linewidth',2)
title([num2str(wave) ' nm']);

% Make the plot distance axis millimeters
unit = 'mm';
[u,p]= wvfPlot(wvf,'1d psf space normalized',unit,wave);
set(p,'color','r','linewidth',3,'linestyle',':')
title([num2str(wave) ' nm']);
```   ## Show the return arguments

Data values that were plotted.

```disp(u)

% Figure properties that can be set.
get(p)
```
```    x: [1x401 double]
y: [1x401 double]

DisplayName: ''
Annotation: [1x1 hg.Annotation]
Color: [1 0 0]
LineStyle: ':'
LineWidth: 3
Marker: 'none'
MarkerSize: 6
MarkerEdgeColor: 'auto'
MarkerFaceColor: 'none'
XData: [1x401 double]
YData: [1x401 double]
ZData: [1x0 double]
BeingDeleted: 'off'
ButtonDownFcn: []
Children: [0x1 double]
Clipping: 'on'
CreateFcn: []
DeleteFcn: []
BusyAction: 'queue'
HandleVisibility: 'on'
HitTest: 'on'
Interruptible: 'on'
Selected: 'off'
SelectionHighlight: 'on'
Tag: ''
Type: 'line'
UserData: []
Visible: 'on'
Parent: 529.0977
XDataMode: 'manual'
XDataSource: ''
YDataSource: ''
ZDataSource: ''

```

## A multiple axis window

```vcNewGraphWin([],'tall');
subplot(3,1,1), wvfPlot(wvf,'1d psf space',unit,wave,'no window');
title([num2str(wave) ' nm']);
subplot(3,1,2), wvfPlot(wvf,'1d psf space normalized',unit,wave,'no window');
subplot(3,1,3), wvfPlot(wvf,'image psf','um',wave,20,'no window');
``` ## Pupil amplitude and phase

```unit = 'mm'; maxMM = 2;
wvfPlot(wvf,'image pupil amp',unit,wave,maxMM);
title(['Pupil function amplitude ' num2str(wave) ' nm']);
wvfPlot(wvf,'image pupil phase',unit,wave,maxMM);
title(['Pupil function phase ' num2str(wave) ' nm']);
```  ## Mesh plots of the psf in angle and space

```unit = 'min'; maxMIN = 10;
wvfPlot(wvf,'2d psf angle',unit,wave,maxMIN);
title([num2str(wave) ' nm']);

unit = 'mm'; maxMM = .050;
wvfPlot(wvf,'2d psf space',unit,wave,maxMM);
title([num2str(wave) ' nm']);

% These are linepairs / unit and maximum frequency
unit = 'mm'; maxF = 300;
wvfPlot(wvf,'2d otf',unit,wave,maxF);
```   ## Change the calculated PSF wavelength and plot again

```% Notice that we don't get an Airy disk, because the calculation
% includes chromatic aberrations.  These show up in the optical
% phase plot in the pupil plane.
%
% Another way to say this is that the pupil function is specified
% at a measurement wavelength, and when we calculate at different
% wavelengths a model of defocus is applied according to a model
% of the human eye's chromatic aberrations.

wave = 460; wvf = wvfSet(wvf,'wave',wave);
wvf = wvfComputePSF(wvf);
unit = 'min';
wvfPlot(wvf,'image psf angle',unit,wave);
title(['Relative amplitude ' num2str(wave) ' nm']);

% A multiple axis window
vcNewGraphWin([],'tall');
subplot(3,1,1), wvfPlot(wvf,'1d psf space',unit,wave,'no window');
title([num2str(wave) ' nm']);
subplot(3,1,2), wvfPlot(wvf,'1d psf space normalized',unit,wave,'no window');
subplot(3,1,3), wvfPlot(wvf,'image psf','um',wave,20,'no window');

% Pupil amplitude and phase
unit = 'mm'; maxMM = 2;
wvfPlot(wvf,'image pupil amp',unit,wave,maxMM);
title(['Pupil function amplitude ' num2str(wave) ' nm']);
wvfPlot(wvf,'image pupil phase',unit,wave,maxMM);
title(['Pupil function phase ' num2str(wave) ' nm']);
```    